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BEHAVIORAL PARTITIONING BY THE NATIVE LIZARD ANOLIS CAROLINENSIS
IN THE PRESENCE AND ABSENCE OF THE INVASIVE ANOLIS SAGREI

IN FLORIDA

AMBIKA KAMATH,1 YOEL E. STUART,1 AND TODD S. CAMPBELL2

ABSTRACT. Animals are known to engage in different behaviors in different parts of their home range, and the

overall habitat occupied by an individual influences where it engages in particular behaviors. However, few studies

have investigated how changes in habitat use alter the partitioning of an animal’s behaviors into different

microhabitats. In eastern Florida, the native lizard Anolis carolinensis is known to change its habitat use in the

presence of invasive Anolis sagrei by perching higher in the canopy. We assessed behavioral partitioning in island

populations of A. carolinensis that are sympatric with A. sagrei compared with islands where A. carolinensis is

allopatric. We found that individuals of A. carolinensis exhibited behavioral partitioning, feeding relatively lower and

displaying relatively higher than their initial perch height in both the presence and absence of A. sagrei. However, the

relative locations chosen for feeding and displaying were not affected by the presence of A. sagrei, suggesting that

habitat changes need not affect behavioral partitioning.

INTRODUCTION

Many animals engage in different behav-

iors in different parts of their habitat, with

particular microhabitats utilized for foraging

(Albers and Gehlbach, 1990; Thornton and

Hodge, 2009), sleeping (Anderson, 1998;

Singhal et al., 2007), breeding (Hagman

and Shine, 2006), and nesting (Kats and
Sih, 1992; Angiletta et al., 2009). Such

partitioning of an individual’s behavioral

repertoire into different microhabitats is

thought to be adaptive. For instance, choos-

ing sleeping sites with relatively low preda-

tion rates (e.g., Anderson, 1998; Clark and

Gillingham, 2006) or foraging sites where the

energetic returns of feeding are relatively
high (e.g., Wanless et al., 1998) are behaviors

likely favored by selection.

The optimal locations for engaging in
particular behaviors likely depend on the

type of habitat occupied by a species. Within
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a species, habitat use often differs among

populations depending on whether or not

they are sympatric with closely related,

ecologically similar species (e.g., Schoener,

1975; Medel et al., 1988; Schluter and

McPhail, 1992; Dietrich and Werner, 2003).

Interspecific interactions such as resource

competition, agonistic interactions, intraguild

predation, and reproductive interference of-

ten have negative fitness consequences for one

or both species (Polis et al., 1989; Gronig and

Hochkirch, 2008; Grether et al., 2009; Hendry

et al., 2009), and changes in habitat use by

species in sympatry may be favored to reduce

the frequency of such interactions.

Despite the prevalence of documented

habitat shifts between populations of a

species that differ in whether or not they

are sympatric with another species, little

attention has been paid to the behavioral

consequences of such shifts. Anolis lizards

are an excellent group in which to study the

effects of among-population variation in

habitat use on behavioral partitioning. At

least two Anolis species are known to engage

in different behaviors at different perch

heights: social interactions between male

Anolis polylepis occur at high perch heights,

and both male and female A. polylepis and

female Anolis distichus scan for and capture

prey at low perch heights, relative to the

average perch height of the population

(Andrews, 1971; Paterson, 1999). Moreover,

many Anolis species exhibit intraspecific

variation in habitat use between populations

that differ in whether or not they are

sympatric with another anole: the average

perch height of individuals in populations

sympatric with other anoles often differs

from the average perch height of individuals

in allopatric populations (Schoener, 1975;

Jenssen, 1973; Jenssen et al., 1984; Losos et

al., 1993; Losos and Spiller, 1999; Campbell,

2000; Kolbe et al., 2008; Edwards and

Lailvaux, 2012).

In this study, we first examined whether

individuals of the green anole, Anolis car-

olinensis, partition their behavioral repertoire

such that they engage in different behaviors

at different perch heights. Based on previous

examples of behavioral partitioning in anoles

(Andrews, 1971; Paterson, 1999), we predict-

ed that, relative to their initial perch heights,

A. carolinensis would feed at low perches and

display at high perches.

Second, we assessed whether behavioral

partitioning in A. carolinensis is modified due

to its perch height shift in the presence of a

congeneric competitor (Collette, 1961; Camp-

bell, 2000; Edwards and Lailvaux, 2012).

Anolis carolinensis is the only anole native to

the U.S.A. Its closest relatives are arboreal,

Cuban, trunk-crown ecomorph anoles (Wil-

liams, 1969; Glor et al., 2005) that partition

the vertical habitat with the low-dwelling,

trunk-ground anole Anolis sagrei, as well as

with up to 10 other Anolis species. The

absence of other anoles from the continental

U.S.A. has enabled the expansion of A.

carolinensis’ habitat to include a wider range

of perch heights—an example of ecological

release (Collette, 1961; Losos, 2009). Howev-

er, the invasion of A. sagrei into the U.S.A.,

where it is now broadly sympatric with A.

carolinensis in Florida, has led A. carolinensis

to shift back to higher perches (Collette, 1961;

Campbell, 2000; Edwards and Lailvaux,

2012). We assessed the effect of this perch-

height shift on behavioral partitioning by

comparing allopatric island populations of A.

carolinensis with island populations of A.

carolinensis sympatric with A. sagrei.

MATERIALS AND METHODS

Study system

In the 1950s, the U.S. Army Corps of

Engineers established 53 dredge-spoil islands

in the Intracoastal Waterway along the

western edge of Mosquito Lagoon in Volusia
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and Brevard Counties, Florida (Campbell and

Echternacht, 2003). These islands were colo-

nized by mainland flora and fauna, including

A. carolinensis. Anolis sagrei reached Mosqui-

to Lagoon in the late 1980s and subsequently

invaded many but not all of the Lagoon’s spoil

islands (Campbell and Echternacht, 2003).

For this study, data were collected from two

islands where only A. carolinensis is present

(hereafter one-species islands: Hornet and

South Twin) and two islands with both A.

carolinensis and A. sagrei (hereafter two-

species islands: Lizard and Line of Cedars).

Colonization by A. sagrei appears to be

random with respect to island characteris-

tics—islands with and without A. sagrei

sampled in this study do not appear to differ

in their distance to the mainland, area, and

perimeter length (Table 1). Further, neither

total tree height nor plant species composition

differs between the islands with and without

A. sagrei across Mosquito Lagoon (Y. E.

Stuart, unpublished data), making it unlikely

that perch availability differs between the one-

and two-species islands that we sampled.

Thus, any differences in A. carolinensis behav-

ior between one- and two-species islands are

likely due to the presence of A. sagrei rather

than environmental differences between is-

lands with and without A. sagrei.

Data collection

We conducted focal observations lasting

2–20 minutes (mean 6 standard error: 15.1

6 0.7 minutes) on undisturbed male and

female lizards between 0700 and 1830 hours

from 12 July to 6 August 2010. Over 98% of

the observations were made between 0700

and 1400 hours. Lizards were found using

the Rand census method (Rand, 1964; Losos,

2009), whereby we walked slowly through

the environment until we spotted an undis-

turbed individual. All observations were

made by a single observer (AK) and were

restricted to relatively open habitats, so that

a distance of at least 2 m could be

maintained between the lizard and the

observer. Observations lasted until the lizard

disappeared from view or up to a maximum

of 20 minutes. If possible, lizards were

caught and marked with a nontoxic SharpieH
marker after the observation period to

ensure that lizards were not resampled

during subsequent island visits. Captured

lizards were also permanently tagged with

nontoxic VI Alpha Tags (Northwest Marine

Technology, Inc.) to further reduce the

possibility of resampling. Finally, lizards

were also caught on these islands for a

different study (Y. E. Stuart, unpublished

data), enabling us to set a lower bound on

the number of lizards present on these

islands; our mean sample size per island

(9.6 6 1.2) was substantially lower than the

mean minimum number of lizards present

per island (93.5 6 7.0), making it unlikely

that we resampled individuals during our

study.

After each observation period, we mea-

sured initial lizard perch height (i.e., the

height above the ground in centimeters

where the lizard was first observed) as well

TABLE 1. DISTANCE TO MAINLAND, PERIMETER LENGTH, AND AREA OF THE ISLANDS WITH AND WITHOUT ANOLIS SAGREI

SAMPLED IN THIS STUDY.

Island A. sagrei Presence Distance to Mainland (m) Perimeter Length (m) Area (m2)

Hornet absent 365 349 5,601

South Twin absent 222 557 12,956

Lizard present 201 478 9,272

Line of Cedars present 335 487 12,281
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as lizard perch height at all observed feeding

locations. We also noted perch heights for

displaying lizards (including both head bob-

bing and dewlap extensions; Jenssen, 1977,

1978) if they displayed at their initial perch,

and measured perch heights for any displays

following upward or downward vertical

movements of 10 cm or more. This method

is equally likely to detect displays that occur

above, below, or at the same height as the

initial perch, and given our directional

prediction that displays will occur at rela-

tively high perches, data collected by this

method are not biased toward confirming

our expectations. Display heights were ana-

lyzed only for males because displaying is a

significant component of the behavioral

repertoire of male but not female A. caroli-

nensis in the breeding season (Jenssen et al.,

1995; Nunez et al., 1997), and, indeed, only

three females were observed displaying across

the four islands. These perch-height measure-

ments enabled the comparison of initial perch

height, perch height at feeding events, and, for

males, perch height at displaying events

across islands. Our comparison of feeding or

displaying perch heights with initial perch

height is based on the widely held but rarely

mentioned assumption that the average initial

perch height approximates the average perch

height of individuals in a population (Rand,

1964).

Statistical analyses

To test whether feeding height was consis-

tently lower than initial perch height across

all islands, we combined independent one-

tailed P-values from four within-island

paired t tests of initial perch height against

feeding height, using the weighted Z method

for combining probabilities (Whitlock, 2005)

to generate a single one-tailed P-value for the

comparison. One-tailed tests were justified

by our directional predictions that, relative

to their initial perch heights, A. carolinensis

would feed at low perches. If an individual

lizard fed multiple times within an observa-

tion, the mean feeding height for that

individual was calculated and used in all

analyses. Mean differences between initial

perch height and feeding height were similar

for males and females (mean difference 6

standard error for males [n 5 13]: 15.7 6

11.6 cm; females [n 5 22]: 16.9 6 4.9 cm);

hence we pooled both sexes for analyses of

differences between feeding height and initial

height. We similarly tested whether, for

males, display height was consistently higher

than initial perch height across all islands.

We confirmed that lizards perched higher

on two-species islands than on one-species

islands using a nested analysis of variance

(ANOVA), with island nested within A.

sagrei presence, to compare initial perch

height between one- and two-species islands.

To examine whether microhabitat use during

feeding differed between one- and two-

species islands, we used a nested ANOVA,

with island nested within A. sagrei presence,

to compare the distance by which individuals

descended to feed (i.e., the difference be-

tween initial perch height and feeding height)

between one- and two-species islands. Simi-

lar analyses were performed to compare the

distance by which males ascended to display

(i.e., the difference between display height

and initial perch height) between one- and

two-species islands.

All statistical analyses were carried out

in JMP v. 5.0.1 (SAS Institute Inc., Cary,

North Carolina 1989–2007), except the

weighted Z-method for combining probabili-

ties, which was implemented using the surv-

comp package v 1.2.1 (Schröder et al., 2011)

installed in R v 2.13.1 (R Development Core

Team, 2011). Nested ANOVAs were per-

formed by hand. All perch-height measure-

ments were square-root transformed to im-

prove normality.
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RESULTS

We measured perch height at feeding for

an average of 8.8 6 1.4 individuals per

island, and perch height at displaying for an

average of 9.5 6 1.9 males per island. On

combining P-values from independent t tests

from the four islands using the weighted Z

method, we found that feeding height was

significantly lower than initial perch height

(Z 5 2.65, P 5 0.004; Fig. 1a). Display

height was significantly higher than initial

perch height (Z 5 2.24, P 5 0.012; Fig. 1b).

The initial perch height of A. carolinensis

was higher in the presence of A. sagrei (F1,2

5 92.3, P 5 0.01). However, the distance by

which individuals descended to feed did not

differ between one- and two-species islands

(F1,2 5 0.09, P 5 0.79), nor did the distance

by which males ascended to display differ

between one- and two-species islands (F1,2 5

1.55, P 5 0.34).

DISCUSSION

Feeding heights

Combining t tests across all islands, we

found that, relative to their initial perch

height, individuals of A. carolinensis fed at

lower perches. Similar partitioning by be-

havior of the vertical extent of the habitat is

seen in A. polylepis (Andrews, 1971) and

female A. distichus (Paterson, 1999), but

neither the prevalence of this phenomenon

across anoles nor its causes has been

established. One explanation for individuals

shifting lower to feed is that prey are more

abundant close to the ground. Data from

islands in the Intracoastal Waterway similar

to those sampled in this study show that

arthropod densities are highest close to

ground (Campbell, 2000), and the vertical

stratification of arthropod density has been

documented in other systems (Lawton, 1983;

Brown et al., 1997). Moreover, a study on

Anolis nebulosus has shown that individuals

shift the microhabitat in which they feed

based on seasonal variation in prey abun-

dance (Lister and Aguayo, 1992). It is hence

likely that anoles choose their foraging

locations based on spatial variation in prey

density.

Consistent with previous studies (Camp-

bell, 2000; Edwards and Lailvaux, 2012), A.

carolinensis perched higher on two-species

islands than on one-species islands. Howev-

er, the average distance that individuals of A.

carolinensis descended to feed did not differ

between one- and two-species islands. Our

result would suggest that A. carolinensis

feeds at higher perches in the presence of

A. sagrei, which is confirmed by a direct

comparison of feeding heights between treat-

ments (nested ANOVA on feeding height,

with the island effect nested within the

treatment effect; treatment effect: F1,2 5

10.4, Pone-tailed 5 0.042). This shift is

potentially a consequence of the depletion

of prey at lower perches by A. sagrei.

Microhabitat shifts in sympatry are often

accompanied by reduced overlap in diet (e.g.,

Huey et al., 1974; Schluter and McPhail,

1992). Gut content analysis from nearby

islands in the Intracoastal Waterway showed

that, on two-species islands where A. car-

olinensis perches higher than A. sagrei, A.

carolinensis was more likely to eat flying

prey, whereas A. sagrei was more likely to

feed on terrestrial prey (Campbell, 2000).

Similarly, the higher-perching Anolis angu-

sticeps and Anolis smaragdinus were more

likely to eat flying prey than the lower-

perching A. distichus or A. sagrei when these

species were in sympatry (Schoener 1968), and

male A. polylepis both perched higher and ate

more arboreal prey than females (Perry, 1996).

The shift in the feeding height of A. caroli-

nensis between one- and two-species islands

might therefore lead to intraspecific varia-

tion in diet and diet-related morphological
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Figure 1. Comparisons of island means of (a) initial perch height and feeding height, and (b) initial perch height

and display height for one-species islands (left) and two-species islands (right). Error bars indicate 61 standard error.

Note that mean initial perch heights differ between (a) and (b) because different individuals were included in each

data set; only individuals observed feeding were included in the computation of mean initial perch height for the

former comparison, and only males observed displaying were included in the latter.
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characters of A. carolinensis between sympat-

ric and allopatric populations.

Although this shift to feeding at higher

perches in sympatry is potentially explained

by the consequences of resource competition

for food, it might also result from direct

agonistic interactions between the two spe-

cies if A. carolinensis shifts to feed at higher

perches to avoid potentially costly interac-

tions with A. sagrei. These selective pressures

are difficult to distinguish from each other

and often act simultaneously (reviewed in

Grether et al., 2009). Though interspecific

resource competition is widely thought to

drive character displacement and diversifica-

tion in Anolis (reviewed in Losos, 2009),

sympatric anoles sometimes interact aggres-

sively (Jenssen et al., 1984; Hess and Losos,

1991), and the role of agonistic interactions

in driving behavioral shifts in sympatry (e.g.,

Ord and Martins, 2006) cannot be ruled out.

Display heights

Combining t tests across all islands, we

found that display heights were significantly

higher than initial perch heights. Andrews

(1971) observed similar behavioral partition-

ing in A. polylepis and proposed that

displaying from higher perches increases the

conspicuousness of the displaying male to

conspecific males and females. Factors such

as the light environment and movement of

background vegetation are known to influ-

ence where a lizard chooses to display (Leal

and Fleishmann, 2002, 2004; Ord et al.,

2007), and might play a role in determining

the visibility of an individual displaying from

relatively high perches to conspecifics, con-

geners, or predators. Studies of territorial

behavior in Anolis do not typically measure

the vertical extent of territories (e.g., Fleming

and Hooker, 1975; Stamps and Crews, 1976;

Johnson et al., 2009; but see Reagan, 1992;

Jenssen et al., 1995; Jenssen and Nunez,

1998). If relatively high perches within a

territory are required by anoles for effective

displaying to conspecifics, then the vertical

extent of a territory might be a crucial

indicator of male fitness.

The difference between initial perch height

and display height is similar on both one-

and two-species islands. One explanation is

that display perches are chosen relative to

conspecifics, irrespective of the presence of

A. sagrei. Given the overall shift to higher

perches in the presence of A. sagrei, this

explanation implies that A. carolinensis

males on two-species islands will be limited

by their display behavior to taller trees.

Indeed, A. carolinensis males on two-species

islands are found on taller trees than

individuals on one-species islands, even

though the distribution of tree heights does

not differ across island types (mean 6

standard error of total height of trees utilized

by lizards on one-species islands: 305.3 6

7.4 cm; two-species islands: 386.2 6 6.1cm;

Y. E. Stuart, unpublished data). Shifts in the

horizontal spatial distribution of A. caroli-

nensis to taller trees in the presence of A.

sagrei might therefore be mediated by a

constraint on male display height relative to

the perch height of conspecifics.

It is possible that, by observing lizards

from eye level, we failed to observe displays

that occurred at higher perches. In particu-

lar, such a detection method might prevent

us from uncovering a larger difference

between initial and display heights on two-

species islands than on one-species islands.

However, our conclusions about the shift of

A. carolinensis males on two-species islands

to taller trees due to higher display perches

would remain unchanged. Given that initial

perch heights and feeding heights are lower

than display heights (Fig. 1), this detection

bias is unlikely to alter our other conclu-

sions, unless initial perch heights or feeding

heights are bimodally distributed.
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Conclusion

The partitioning of an individual’s behav-

ioral repertoire into different parts of its

habitat is common in animals (e.g., Albers

and Gehlbach, 1990; Kats and Sih, 1992;

Hagman and Shine, 2006; Angiletta et al.,

2009; Thornton and Hodge, 2009) and has

previously been documented in two species of

Anolis lizards (A. polylepis, Andrews, 1971; A.

distichus, Paterson, 1999). In this study, we

show that individuals of A. carolinensis also

partitioned behaviors by feeding and display-

ing at different heights relative to their initial

perch position. Moreover, though the pres-

ence of the congeneric competitor, A. sagrei,

has caused an overall shift to higher perches in

A. carolinensis (Campbell, 2000; Edwards

and Lailvaux, 2012; this study), the relative

positions of feeding and displaying locations

were not affected by the presence of A. sagrei.

The functional reasons for behavioral parti-

tioning as well as the mechanisms leading to

overall habitat shifts in sympatry will need to

be established before we can understand

whether and how behavioral partitioning

can vary as habitat use changes.
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